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Robust Genomic Control for Association Studies
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Population-based case-control studies are a useful method to test for a genetic association between a trait and a
marker. However, the analysis of the resulting data can be affected by population stratification or cryptic relatedness,
which may inflate the variance of the usual statistics, resulting in a higher-than-nominal rate of false-positive results.
One approach to preserving the nominal type I error is to apply genomic control, which adjusts the variance of
the Cochran-Armitage trend test by calculating the statistic on data from null loci. This enables one to estimate
any additional variance in the null distribution of statistics. When the underlying genetic model (e.g., recessive,
additive, or dominant) is known, genomic control can be applied to the corresponding optimal trend tests. In
practice, however, the mode of inheritance is unknown. The genotype-based x2 test for a general association between
the trait and the marker does not depend on the underlying genetic model. Since this general association test has
2 degrees of freedom (df), the existing formulas for estimating the variance factor by use of genomic control are
not directly applicable. By expressing the general association test in terms of two Cochran-Armitage trend tests,
one can apply genomic control to each of the two trend tests separately, thereby adjusting the x2 statistic. The
properties of this robust genomic control test with 2 df are examined by simulation. This genomic control–adjusted
2-df test has control of type I error and achieves reasonable power, relative to the optimal tests for each model.
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For mapping disease-susceptibility genes for complex
human diseases, case-control studies testing linkage dis-
equilibrium or association are useful approaches for de-
tecting markers with small-to-moderate genetic effects
on traits (Risch and Merikangas 1996; Khoury and Yang
1998). However, because of population stratification or
cryptic relatedness, case-control studies may produce
spurious associations. Case-control studies, on the other
hand, are easier than family-based association studies to
conduct, because they use population controls and do
not require genetic data from family members. Statistical
methods have been developed for adjusting population
stratification and/or cryptic relatedness in case-control
studies. One is based on inferring the number of strata
in a population and estimating the probability of each
sample member belonging to these strata (Pritchard and
Rosenberg 1999; Pritchard et al. 2000; Satten et al.
2001; Zhu et al. 2002). Another approach is genomic
control (GC) (Devlin and Roeder 1999; Bacanu et al.
2000; Devlin et al. 2001; Reich and Goldstein 2001;
Zheng et al. 2005), which adjusts the variance of the

Cochran-Armitage trend test by use of data from null
loci. Here, we focus on developing a robust GC test.

In case-control studies, the Cochran-Armitage (CA)
trend tests are preferred to the allele-based test, as they
are valid when Hardy-Weinberg equilibrium (HWE)
does not hold. Furthermore, the two types of tests are
asymptotically equivalent under HWE (Sasieni 1997).
To apply the CA trend test, increasing scores are assigned
a priori to the genotypes. Thus, the trend statistic is a
function of scores. The choice of scores depends on the
underlying genetic model—for example, recessive, ad-
ditive, or dominant (Sasieni 1997; Zheng et al. 2003)—
which is a typical problem in the application of trend
tests (Graubard and Korn 1987). The GC developed by
Devlin and Roeder (1999) was based on the trend test
with scores optimal for the additive model. Zheng et al.
(2005) studied GC for recessive and dominant models.
For many complex diseases, the underlying genetic mod-
els are usually unknown, and a single trend test for case-
control studies may lose substantial power when the
model is misspecified (Freidlin et al. 2002). Thus, an
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Table 1

Genotype Distributions for Case-
Control Data

DATA

GENOTYPE

NN NM MM Total

Case r0 r1 r2 r
Control s0 s1 s2 s
Total n0 n1 n2 n

efficiency-robust test (Gastwirth 1966) having fairly high
power across a set of models should be useful. Here, we
show that the usual x2 test of general association (GA)
between the disease and the marker is robust and can
be modified to account for population stratification. This
test is widely used in genetic data analysis and is also
supported by many existing software packages (Weir
1996; Sham 1998; Gibson and Muse 2004).

The GC method adjusts the variance of a trend test
by estimating the variance inflation caused by popula-
tion stratification by use of the null loci. It is not directly
applicable to the GA test statistic, which has a compli-
cated variance-covariance matrix. A direct adjustment
at the scale level may not be applicable. To circumvent
this problem, we express the GA test in terms of two
CA trend tests. Then, adjusting each CA trend test by
the usual GC method provides the adjustment of the GA
test.

Consider a genetic marker with two alleles M and N
with frequencies p and , respectively, whereq p 1 � p
M is a disease-associated allele, referred to as the “risk
allele.” The genotype distributions of case-control data
are displayed in table 1, where and are(r ,r ,r ) (s ,s ,s )0 1 2 0 1 2

genotype counts of cases and controls. They are inde-
pendent and follow multinomial distributions (r ,r ,r ) ∼0 1 2

and . DenoteMul(r; p ,p ,p ) (s ,s ,s ) ∼ Mul(s; q ,q ,q )0 1 2 0 1 2 0 1 2

the disease prevalence in the population as K p
; the genotypes as , , andPr (disease) G p NN G p NM0 1

; and their frequencies by ,G p MM g p Pr (G ) i p2 i i

. The penetrances are defined as the conditional0,1,2
probabilities of disease given each of three genotypes

f p Pr (diseaseF G ),i p 0,1,2 .i i

The genotype frequencies can be written as p pi

andPr (G F disease) p g f / K q p Pr (G F control) pi i i i i

for in cases and controls.g (1 � f ) / (1 � K) i p 0,1,2i i

Under the null hypothesis of no association, H :p p0 i

for ; that is, . Asq p g i p 0,1,2 H :f p f p f p Ki i 0 0 1 2

M is a risk allele, under the alternative hypothesis
with at least one equality strictly holding.H :f � f � f1 0 1 2

A genetic model is recessive, additive, or dominant when
the penetrances satisfy and ,f p (1 � l)f � lf l p 01 0 2

, or 1, respectively. For local alternatives (1/2 f ≈ f ≈0 1

), the multiplicative model is equivalent to2f f p f f2 1 0 2

the additive model. To see this, write g p f /f p 1 �1 1 0

and , and fore 1 1 g p f /f p 1 � e 1 1 e ≈ 0 i p1 2 2 1 2 i

. Then, the additive model implies that .1, 2 e p 2e2 1

Thus, .2 2g p (1 � e ) ≈ 1 � 2e p 1 � e p g1 1 1 2 2

When the genetic model is known, a more powerful
and directed test is the CA trend test (Agresti 1990). To
apply this CA trend test, increasing scores are(0,x,2)
assigned to three genotypes , respectively,(NN,NM,MM)
where . The trend test can be written (Sasieni0 � x � 2
1997) as

2
1/2n � x (sr � rs )i i i[ ]ip0

Z(x) p , (1)2 1/2
2 2

2rs n � x n � � x ni i i i{ [ ( ) ]}ip0 ip0

where . For a given x, asymp-(x ,x ,x ) p (0,x,2) Z(x)0 1 2

totically follows a standard normal distribution under
. Thus, the null hypothesis is rejected whenH FZ(x)F 10

. The trend test is optimal when x is properlyz Z(x)1�a/2

specified a priori. For recessive, additive (multiplicative),
and dominant models, the respective values of optimal
x are 0, 1, 2. From equation (1), it follows that the trend
test is invariant to a linear transformation of x—Z(x)
that is, the scores and yield the same(0,x,2) (0,x/2,1)
trend test. Thus, a general model can be expressed as

, where and the optimalf p (1 � l)f � lf l � [0,1]1 0 2

choice of x in is l (Zheng et al. 2003). Unfortu-Z(x)
nately, is not robust to a misspecification of theZ(x)
genetic model.

The GC of Devlin and Roeder (1999) is based on
, the optimal test for the additive model. When theZ(1)

population is stratified, they considered the test statis-
tic , which follows x2 distribution2 2 ˆZ (1) p Z (1)/l(1)∗
with 1 df ( ), where is the variance inflation factor2x l(1)1

that can be estimated using the null loci. Let the trend
test , calculated on c null loci, be denoted asZ(1)

, which are realizations of a random var-Z (1), … ,Z (1)1 c

iable , where the subscript 0 indicates the null lo-Z (1)0

ci, which are not associated with diseases and are not
under linkage disequilibrium with the disease loci.
Since follows and is a constant,2 2Z (1) x l(1) l(1) p∗ 1

. Therefore, can be estimated by the ex-2E[Z (1)] l(1)0

pected value of a random variable by using its realiza-
tions . Devlin and Roeder (1999) studied2 2Z (1), … ,Z (1)1 c

both Bayesian and frequentist approaches for estima-
ting . Here, we use the latter—that is, ˆl(1) l(1) p
median . Zheng et al. (2005)2 2[Z (1), … ,Z (1)] / 0.4561 c

showed that the idea can be applied to the optimal tests
for the recessive and dominant models. Also, we assume
that the minor-allele frequencies of null loci are close to
that of the marker (Reich and Goldstein 2001).

A robust test that does not depend on the underlying
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Table 2

Type I Error and Empirical Power Performance
of Three GC Trend Tests With No Population
Stratification

Allele
Frequency
and Model Z (2)∗ Z (1)∗ Z (0)∗

∗T2
∗∗T2

:p p .1
Nulla .063 .062 .052 .043 .041
Nullb .051 .050 .040 .028 .028
DOMc .795 .772 .079 .681
ADDd .790 .800 .161 .702
RECe .176 .424 .795 .678

:p p .5
Nulla .063 .062 .062 .056 .068
Nullb .051 .051 .049 .037 .037
DOMf .811 .622 .158 .703
ADDg .651 .774 .572 .701
RECh .193 .677 .818 .715

NOTE.—Type I error and empirical power perfor-
mance are shown for the three GC trend tests ,Z (2)∗

, and under the dominant (DOM), additiveZ (1) Z (0)∗ ∗
(ADD), and recessive (REC) models and for the RGC

and the 2-df x2 test with direct GC adjustment,∗T2

, by use of two subpopulations of sizes ,∗∗T a p 2002 1

for cases and , for controls,a p 0 b p 0 b p 2002 1 2

with no population stratification ( ), and two-F p 0
sided with 10,000 replications for powera p 0.05
and 100,000 for type I error. In all models, the baseline
penetrance .f p 0.10

a With GC.
b Without GC.
c .f p f p 0.181 2
d , .f p 0.175 f p 0.251 2
e , .f p 0.1 f p 0.5521 2
f .f p f p 0.1871 2
g , .f p 0.15 f p 0.21 2
h , .f p 0.1 f p 0.1751 2

genetic model is a test of the general association for the
table (table 1), which is given by2 # 3

n r n r n r2 2 20 1 2(r � ) (r � ) (r � )0 1 2n n n
T p � �GA n r n r n r0 1 2

n n n

n s n s n s2 2 20 1 2(s � ) (s � ) (s � )0 1 2n n n
� � � . (2)n s n s n s0 1 2

n n n

Under the null hypothesis of no association between dis-
ease status and genotypes, follows asymptoticallyTGA

the x2 distribution with 2 df ( ). Note that GC has been2x2

applied to the test statistics that have a distribution,2x1

whereas has a distribution. Thus, direct appli-2T xGA 2

cation of GC to equation (2) is inappropriate.

However, the general association test, , is asymp-TGA

totically equivalent to the 2-df score test obtained from
the logistic regression model. Define two indicator var-
iables as , , and to designate the(x ,x ) (0,0) (0,1) (1,1)1 2

genotypes NN, NM, and MM, respectively. For the jth
individual, his genotype is denoted by two indicator var-
iables , and its status is denoted as for case(x ,x ) y p 11j 2j j

and for control. Then, applyingy p 0j

exp (a � b x � b x )1 1j 2 2j
Pr (y p 1Fx ,x ) p ,j 1j 2j 1 � exp (a � b x � b x )1 1j 2 2j

the likelihood function is proportional to

n

yjL(a,b ,b ) p [Pr (y p 1Fx ,x )]{�1 2 j 1j 2j
jp1

1�yj# [1 � Pr (y p 1Fx ,x )] .}j 1j 2j

The null hypothesis of no association is H :b p b p0 1 2

. The score function evaluated under can be written0 H0

(see appendix A) as

�L 1
U p F p (sr � rs )ˆ1 H ,a 2 20�b n1

�L 1
U p F p [s(r � r ) � r(s � s )] ,ˆ2 H ,a 1 2 1 20�b n2

where is the maximum-likelihood estimate of the nui-â

sance parameter a under . Denote U as andH (U ,U )0 1 2

the observed Fisher information matrix evaluated un-
der and as . The submatrix ofˆH a p a I (a,b ,b )0 1 2

corresponding to is denoted by�1 �1I (a,b ,b ) (b ,b ) S1 2 1 2

and is a consistent estimate of the inverse of the co-
variance matrix of . Thus, under ,U H0

T �1T p U S U2

1 2 2 ˆp [Z (0) � Z (2) � 2rZ(0)Z(2)] (3)2ˆ1 � r

has an asymptotic distribution, where2x2

1/2

n n0 2
r̂ p (4)( )(n � n )(n � n )1 2 0 1

is a consistent estimator of the null correlation between
and (appendix A). Note that is approxi-Z(0) Z(2) T2

mately when there is no population stratification.2x2

To adjust for possible population stratification, we can
apply GC to equation (3) by replacing andZ(0) Z(2)
by and , respectively, and by , which isˆZ (0) Z (2) r r∗ ∗ ∗
estimated using null loci. The resulting test statistic
will be referred to as the “robust genomic control”
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Table 3

Type I Error and Empirical Power Performance of Three GC Trend
Tests With Population Stratification

F, Allele
Frequency,
and Model Z (2)∗ Z (1)∗ Z (0)∗

∗T2
∗∗T2

:F p .005
:p p .1

Nulla .063 .061 .031 .041 .081
Nullb .254 .260 .072 .192 .192
DOMc .807 .769 .087 .683
ADDd .803 .798 .239 .721
RECe .153 .282 .790 .631

:p p .2
Nulla .062 .061 .054 .053 .091
Nullb .240 .258 .125 .201 .201
DOMf .823 .739 .156 .703
ADDg .790 .778 .464 .733
RECh .160 .353 .811 .685

:p p .5
Nulla .062 .061 .061 .055 .097
Nullb .199 .260 .200 .206 .206
DOMi .795 .481 .140 .654
ADDj .789 .799 .673 .786
RECk .198 .569 .800 .673

:F p .05
:p p .2

Nulla .052 .043 .045 .045 .141
Nullb .657 .674 .458 .628 .628
DOMl .795 .689 .131 .623
ADDm .734 .717 .505 .677
RECn .168 .281 .779 .654

:p p .5
Nulla .052 .048 .053 .047 .142
Nullb .613 .679 .613 .637 .637
DOMo .804 .449 .130 .633
ADDp .741 .796 .776 .777
RECq .149 .443 .735 .558

NOTE.—Type I error and empirical power performance of the three
GC trend tests , , and under the dominant (DOM),Z (2) Z (1) Z (0)∗ ∗ ∗
additive (ADD), and recessive (REC) models and for the RGC and∗T2

the 2-df x2 test with direct GC adjustment, , by use of two sub-∗∗T2

populations of sizes , for cases and ,a p 200 a p 0 b p 0 b p1 2 1 2

for controls, with population stratification, and two-sided200 a p
with the same replications as in table 2. In all models, the baseline0.05

penetrance f p 0.10
a With GC.
b Without GC.
c .f p f p 0.2641 2
d , .f p 0.254 f p 0.4081 2
e , .f p 0.1 f p 0.7171 2
f .f p f p 0.2321 2
g , .f p 0.213 f p 0.3261 2
h , .f p 0.1 f p 0.3661 2
i .f p f p 0.2541 2
j , .f p 0.215 f p 0.3301 2
k , .f p 0.1 f p 0.2251 2
l .f p f p 0.651 2
m , .f p 0.545 f p 0.991 2
n , .f p 0.1 f p 0.981 2
o .f p f p 0.7151 2
p , .f p 0.52 f p 0.941 2
q , .f p 0.1 f p 0.5391 2

(RGC) test and is denoted as ∗ 2 2T p [Z (0) � Z (2) �2 ∗ ∗
, which has a x2 distribution of22r Z (0)Z (2)]/(1 � r )∗ ∗ ∗ ∗

under and population stratification. The fact that2x H2 0

the RGC test is a function of the adjusted optimal test
statistics for the two extreme genetic models, recessive
and dominant, is not surprising, since the optimal tests
for the “extreme” models are components of nearly all
efficiency-robust tests (Gastwirth 1966, 1985).

To evaluate the performance of the proposed geno-
type-based x2 test, we conducted simulation studies and
estimated empirical power and type I error for three
trend tests , , and and the RGC testZ (2) Z (1) Z (0)∗ ∗ ∗

under a range of underlying conditions and genetic∗T2

models. For comparison, we also applied the GC ad-
justment to the 2-df x2 test statistic (eq. [3]). This mod-
ified GA test is denoted as . The SAS macro running∗∗T2

the simulations is available on request. In the simula-
tions, we assumed that the candidate gene and the null
loci have the same minor-allele frequency. Our simula-
tions follow an algorithm similar to that of Devlin and
Roeder (1999), Bacanu et al. (2000), and Zheng et al.
(2005), which assumes that each subpopulation is in
HWE. We specified the minor-allele frequency p, the
Wright’s coefficient of inbreeding F, the penetrances ,f0

, and under various genetic models, the sample sizesf f1 2

of cases and controls for the kth subpopulationa bk k

, and the number of null loci c used to es-k p 1, … ,m
timate variance inflation factors. In step 1, the allele
frequency was generated for the kth subpopulationpk

from the beta distribution, ,Beta[(1 � F)p/F,(1 � F)q/F]
for . In step 2, for individuals from the kthk p 1, … ,m
subpopulation, two alleles were drawn at random from
the binomial distribution to create a genotype at(2,p )k

the candidate allele locus. Disease status was randomly
generated conditional on the number, i, of candidate
alleles in the genotype by use of the Bernoulli distribu-
tion with parameter . The process continued untilf ai k

cases and controls were obtained. In step 3, genotypesbk

for each of c null loci were generated using the same
beta-binomial algorithm as above. The statistics Z (j)k

( ) at the kth locus ( ) were calcu-j p 0,1,2 k p 1, … ,c
lated, and the variance inflation factors, , were es-l(j)
timated as . Then,2 2l̂(j) p median[Z (j), … ,Z (j)]/0.4561 c

the GC trend test statistics were obtained byZ (j)∗
. The RGC test was calculated us-1/2 ∗ˆZ (j) p Z(j)/l (j) T∗ 2

ing equations (3) and (4), with estimated as the av-r∗
erage of over c null loci. For the 2-df x2 test with directr̂

GC adjustment, , we calculated for the kth null∗∗T T2 2,k

locus ( ) and the variance inflation factorsk p 1, … ,c
as , where 1.386 isl̂(T ) p median(T , … ,T ) /1.3862 2,1 2,c

the median of the x2 distribution . Then,2 ∗∗x T p2 2

, where was used in place of in equationˆ ˆT /l(T ) r r2 2 ∗
(3).
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Table 4

Type I Error and Empirical Power Performance
of Three GC Trend Tests with Larger Population
Sizes and Population Stratification

F, Allele
Frequency,
and Model Z (2)∗ Z (1)∗ Z (0)∗

∗T2
∗∗T2

:F p 0
:p p .1

Nulla .062 .063 .058 .053 .059
Nullb .050 .049 .052 .038 .038
DOMc .793 .768 .101 .680
ADDd .788 .797 .213 .710
RECe .124 .310 .788 .672

:F p .005
:p p .1

Nulla .061 .061 .060 .055 .096
Nullb .284 .293 .103 .233 .233
DOMf .813 .774 .146 .696
ADDg .788 .781 .404 .731
RECh .105 .202 .819 .697

:F p .05
:p p .1

Nulla .044 .038 .060 .055 .141
Nullb .691 .696 .336 .652 .652
DOMi .800 .767 .278 .686
ADDj .777 .770 .607 .747
RECk .115 .189 .784 .680

NOTE.—Type I error and empirical power perfor-
mance of the three GC trend tests , , andZ (2) Z (1)∗ ∗

under the dominant (DOM), additive (ADD),Z (0)∗
and recessive (REC) models and for the RGC and∗T2

the 2-df x2 test with direct GC adjustment, , by use∗∗T2

of two subpopulations of sizes , fora p 750 a p 2501 2

cases and , for controls, with pop-b p 250 b p 7501 2

ulation stratification, and two-sided with thea p 0.05
same replications as in table 2. In all models, the base-
line penetrance f p 0.10

a With GC.
b Without GC.
c .f p f p 0.1321 2
d , .f p 0.13 f p 0.161 2
e , .f p 0.1 f p 0.2461 2
f .f p f p 0.1661 2
g , .f p 0.161 f p 0.2221 2
h , .f p 0.1 f p 0.3011 2
i .f p f p 0.3741 2
j , .f p 0.355 f p 0.611 2
k , .f p 0.1 f p 0.6301 2

Table 2 reports the type I error rates and empirical
power of three trend tests and two 2-df x2 tests after
GC corrections when there is no population stratifica-
tion. Only the power for is reported. When there was∗T2

no population stratification, the GC-adjusted type I error
rates for three trend tests and the directly GC-adjusted
x2 test were slightly greater than those of the cor-∗∗T2

responding unadjusted tests, because of the variation

that GC method adds by estimating the variance infla-
tion factor from c null loci. For the RGC statistic ,∗T2

the type I error rates were because of the es-a ! 0.05
timation of the null correlation. For empirical power
comparison, when the genetic model is unknown, a test
statistic is highly efficiency robust if it has high minimum
power across the genetic models—that is, if it has high
power when the model is misspecified. From table 2, the
RGC test was efficiency robust, relative to each of∗T2

the three trend tests optimal for a specific genetic model.
Across the three genetic models, or hadZ (0) Z (2)∗ ∗
power !20% when the dominant or recessive model is
true, respectively. The trend test optimal for the additive
model was the most efficiency robust among threeZ (1)∗
trend tests. However, had greater minimum power∗T2

than . When there was population stratificationZ (1)∗
(tables 3 and 4), type I error rates for all tests were
inflated. When GC controls were applied, the type I error
for the three trend tests and RGC was near the nominal
0.05 level. Use of direct GC adjustment of the 2-df x2

statistic (eq. [3]), however, failed to fully adjust for pop-
ulation stratification. The pattern of power performance
among three GC trend tests and the RGC was similar
to that shown in table 2 when there is no population
stratification.

For genetic case-control association studies when the
genetic model is unknown and there is no population
stratification, the x2 test with 2 df testing the general
association is highly efficient, relative to the optimal
trend tests (Zheng et al. 2006). Moreover, this genotype-
based 2-df x2 test has been applied more often in genetic
association studies than the trend tests have. When there
is population stratification, the type I error rates may be
inflated using either the trend tests or the 2-df x2 test
because of the inflation of variances of the test statistics.
GC is a useful method for adjusting the variance of three
trend tests to ensure the desired type I error rate. How-
ever, GC cannot be directly applied to the 2-df x2 test
statistic, which has the complicated variance-covariance
matrix. After expressing the 2-df score test from the
logistic regression model as a function of two trend tests,
we apply the GC approach to the 2-df x2 test by adjusting
the variance of each trend test. Simulation results show
that this 2-df x2 test is efficiency robust across the re-
cessive, additive, and dominant models, compared with
the three GC trend tests.
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Appendix A

The log-likelihood can be written as log L(a,b ,b ) p ra � b r � b (r � r ) � n log [1 � exp (a)] � n log [1 �1 2 1 2 2 1 2 0 1

. From , is the maximum-likelihood es-ˆexp (a � b )] � n log [1 � exp (a � b � b )] � log L/�aF p 0 a p log (r/s)2 2 1 2 H0

timate of a. The score functions are given by and� log L/�b p r � n exp (a � b � b )/[1 � exp (a � b � b )]1 2 2 1 2 1 2

. Hence,� log L /�b p (r � r ) � n exp (a � b ) / [1 � exp (a � b )] � n exp (a � b � b ) / [1 � exp (a � b � b )]2 1 2 1 2 2 2 1 2 1 2

and are obtained by substituting and .ˆU U b p b p 0 exp (a) p r/s1 2 1 2

Let be the observed Fisher information matrix evaluated under and . Then, underˆI(a,b ,b ) H a p a H1 2 0 0

and , , , and2 2 2 2 2 2ˆa p a �� log L/�a p nf(1 � f) �� log L/(�a�b ) p �� log L/�b p �� log L/�b b p n f(1 � f)1 1 1 2 2

, where . Thus,2 2 2�� log L/�a�b p �� log L/�b p (n � n )f(1 � f) f p r/n2 2 1 2

1 1⎛ ⎞0 �
n n0 0

1 n � n 11 2�1I (a,b ,b ) p 0 � ,1 2
f(1 � f) n n n1 2 1

1 1 n � n⎜ ⎟0 1� �
n n n n⎝ ⎠0 1 0 1

n � n 11 2⎛ ⎞�
n n n1 1 2 1�1S p ,

f(1 � f) 1 n � n0 1⎜ ⎟�
n n n⎝ ⎠1 0 1

and

(n � n )n n nf(1 � f) 0 1 2 0 2⎛ ⎞
S p ,⎜ ⎟

n n n n (n � n )⎝ ⎠0 2 0 1 2

where is a consistent estimate of covariance matrix of . Note that and2 2 2ˆS (U ,U ) Z (0) p U /Var(U ) Z (2) p1 2 1 1

, where and . Hence, a consistent es-2 ˆ ˆ ˆU /Var(U ) Var(U ) p f(1 � f)(n � n )n /n Var(U ) p f(1 � f)n (n � n )/n2 2 1 0 1 2 2 0 1 2

timate of the asymptotic null correlation isr p Corr[Z(0),Z(2)] p Corr(U ,U )1 2

1/2n n0 2
r̂ p .{ }(n � n )(n � n )1 2 0 1

Thus, can be written asT �1T p U S U2

1 2 2T p [U n (n � n ) � U (n � n )n � 2U U n n ]2 1 0 1 2 2 0 1 2 1 2 0 2
f(1 � f)n n n0 1 2

(n � n )(n � n )0 1 1 2 2 2 ˆp [Z (0) � Z (2) � 2Z(0)Z(2)r] ,
n n1

where .2ˆ(n n)/[(n � n )(n � n )] p 1 � r1 0 1 1 2
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